Draft Meeting Minutes
Technical Project Planning Meeting 1
Picatinny Arsenal Military Munitions Response Program Remedial Investigation
Picatinny Arsenal, New Jersey

On 10 November 2010, representatives from the stakeholder organizations listed below attended the Military Munitions Response Program (MMRP) Remedial Investigation (RI) Technical Project Planning (TPP) 1 meeting at Picatinny Arsenal, New Jersey. The purpose of this meeting was to bring all of the stakeholders together to identify and discuss project goals and data quality objectives, and ultimately agree upon the path forward for successfully completing the RI.

Points of Contact:

Picatinny Arsenal Environmental Restoration – Ted Gabel, Project Manager, 973-724-6748
U.S. Army Corps of Engineers – Baltimore District – Nancy Flaherty, Project Manager, 410-779-2796
Contractor, Weston Solutions, Inc. – Laura Pastor, Project Manager, 610-701-3445

Meeting Attendees:

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard Braun</td>
<td>USACE – Baltimore District</td>
<td>Risk Assessor</td>
</tr>
<tr>
<td>Barbara Dolce</td>
<td>Subsurface Solutions LLC/PTA RAB</td>
<td>TAPP Contractor</td>
</tr>
<tr>
<td>Nancy Flaherty</td>
<td>USACE - Baltimore District</td>
<td>Project Manager</td>
</tr>
<tr>
<td>Ted Gabel</td>
<td>PTA Environmental Restoration</td>
<td>Project Manager/MMRP Program Manager</td>
</tr>
<tr>
<td>Megan G. Garrett</td>
<td>USACE – Baltimore District</td>
<td>Geologist</td>
</tr>
<tr>
<td>Michael Glaab</td>
<td>PTA RAB</td>
<td>Member/Co-Chair</td>
</tr>
<tr>
<td>Brian Guthrie</td>
<td>WESTON</td>
<td>Geophysicist</td>
</tr>
<tr>
<td>Judy Hackett</td>
<td>WESTON</td>
<td>Client Service Manager</td>
</tr>
<tr>
<td>Jim Kealy</td>
<td>NJDEP</td>
<td>Technical Coordinator</td>
</tr>
<tr>
<td>Mary Ellen Maly</td>
<td>USACE</td>
<td>Army Restoration Manager</td>
</tr>
<tr>
<td>Joseph Marchesani</td>
<td>NJDEP</td>
<td>Hydrogeologist</td>
</tr>
<tr>
<td>Deborah McKinley</td>
<td>USACE – Baltimore District</td>
<td>Project Engineer</td>
</tr>
<tr>
<td>Cliff Morris</td>
<td>Tilcon (Mt Hope Quarry)</td>
<td>Project Manager</td>
</tr>
<tr>
<td>Laura Pastor</td>
<td>WESTON</td>
<td>Project Manager</td>
</tr>
<tr>
<td>Jim Pastorick</td>
<td>UXO Pro/NJDEP</td>
<td>Technical Representative</td>
</tr>
<tr>
<td>Bill Roach</td>
<td>USEPA</td>
<td>Remedial Project Manager</td>
</tr>
<tr>
<td>Tom Silecke</td>
<td>PTA</td>
<td>PTA</td>
</tr>
<tr>
<td>J.B. Smith</td>
<td>PTA</td>
<td>UXO Safety/MMRP Project Manager</td>
</tr>
<tr>
<td>Ryan Steigerwalt</td>
<td>WESTON</td>
<td>Senior Geophysicist</td>
</tr>
<tr>
<td>Lisa Szegedi</td>
<td>MPI</td>
<td>MMRP Technical Manager</td>
</tr>
<tr>
<td>Diane Trocchio</td>
<td>PTA RAB /Rockaway Township Health Department</td>
<td>Member and Township Representative</td>
</tr>
<tr>
<td>Deb Volkmer</td>
<td>WESTON</td>
<td>Meeting Recorder</td>
</tr>
<tr>
<td>Lisa K. Voyce</td>
<td>PTA RAB/Mine Hill Representative</td>
<td>Member</td>
</tr>
<tr>
<td>Greg Zalaskus</td>
<td>NJDEP</td>
<td>Case Manager</td>
</tr>
</tbody>
</table>

AEC – Army Environmental Command
MPI – Malcolm Pirnie
NJDEP – New Jersey Department of Environmental Protection
TAPP – Technical Assistance for Public Participation
USEPA – U.S. Environmental Protection Agency
Draft Meeting Minutes
Technical Project Planning Meeting 1
Picatinny Arsenal Military Munitions Response Program Remedial Investigation
Picatinny Arsenal, New Jersey

WESTON – Weston Solutions, Inc.
1. **Overview of the TPP and Purpose of the MMRP**

 (Laura Pastor, WESTON)

 Ms. Pastor provided an overview of the TPP process, stressing the importance of collaboration with regulators and stakeholders early in the project planning process. Ms. Pastor discussed that fact that the presentation will be more technically detailed than traditional TPP 1’s since the regulators and stakeholders already had a very good understanding of Picatinny Arsenal (PTA)’s MMRP with experience gained during the MMRP Site Inspection.

2. **Overview of the Picatinny MMRP Remedial Investigation (RI) Objectives** (*Presentation Slides 8-18*)

 (Laura Pastor, WESTON)

 Ms. Pastor presented an overview of the Picatinny MMRP RI objectives. The discussion included the RI objectives including characterizing the nature and extent of munitions and explosives of concern (MEC) and munitions constituents (MC), planning documentation (work plans), field investigation (data collection), and reporting requirements (RI report with updated conceptual site models, hazard assessments, risk assessments, and Munitions Response Site Prioritization Protocol update).

 Mr. Gabel, PTA, briefed the group on the status of the Picatinny MMRP and discussed several previous projects including the MMRP Site Inspection, Environmental Engineering/ Cost Analysis, time critical removal actions (TCRA) at Tilcon quarry and removal action at the Former DRMO Yard. Mr. Gabel mentioned unexploded ordnance (UXO) construction support is required at PTA and an upcoming non time-critical removal action (NTCRA) regarding Land Use Controls (LUC) at Picatinny scheduled shortly and Decision Document regarding the EE/CA.

 Mr. Pastorick, UXO Pro, and Mr. Glaab, PTA RAB questioned why the TCRA was stopped. JB Smith indicated that the TCRA demolition processes were currently being investigated by the Picatinny safety department and the Picatinny Command has requested that denotation on and near Picatinny not be conducted by a contractor until this issue is resolved. [Note: The TCRA discussion is not directly related to the MMRP RI.]

 Ms. Pastor presented the munitions response sites (MRSs) under the MMRP RI performance work statement (PWS):

 - 1926 Explosion Radius (PICA-003-R-01)
 - 1926 Explosion Radius – Off-Post (PICA-004-R-01)
 - Green Pond (PICA-005-R-01)
 - Former Operational Area (PICA-006-R-01)
 - Lakes (PICA-008-R-01)
 - Shell Burial Grounds (PICA-010-R-01)
 - Lake Denmark – Off-Post (PICA-012-R-01)
 - Inactive Munitions Waste Pit – Off-Post (PICA-014-R-01)
Ms. Flaherty, USACE, indicated that the Inactive Munitions Waste Pit (on-post) MRS and the Former Munitions and Propellant Test Area MRS are currently identified as optional sites under the PWS. These sites are being evaluated by the installation to determine if they will again be used as operational ranges. If these sites do not go operational they will be included in the Picatinny MMRP RI.

Mr. Kealy, DEP, asked if there were operational areas in the Inactive Munitions Waste Pit MRS. Mr. Smith, PTA responded that ranges do exist in that area and that the ranges stretch from almost the lower tip of Lake Picatinny extending to the northeast and are in the process of being redefined.

Mr. Gabel, PTA, included that the Installation Restoration Program (IRP) is also investigating sites in the MRSs and those areas are not associated with the MMRP.

Mr. Gabel noted that since LUCs (Institutional Controls and Engineering Controls) are most likely the expected outcome for most of the PTA hence the investigation of onsite PTA could be different or less that of offsite.

3. Overview of Data Quality Objectives (DQOs) and Site Wide Conceptual Site Model (CSM) (Presentation Slides 19-23)

(Lisa Szegedi, MPI)

Ms. Szegedi, MPI, provided an overview of the DQOs developed based on the EPA’s 7 Step Process to develop characterization strategies for each MRS. The CSMs developed for each site was used to determine the primary MEC and MC release mechanism which drove the problem statement for the characterization strategy.

4. MEC and MC Characterization Strategies (Presentation Slides 24-32)

(Lisa Szegedi, Malcolm Pirnie and Ryan Steigerwalt, WESTON)

Ms. Szegedi and Mr. Steigerwalt, WESTON, presented the details of the proposed investigative field activities. An overview of the investigation approach for MEC was discussed including the statistical applications used to determine type, coverage and location of geophysical surveys (including mag & dig surveys and digital geophysical mapping). MC sampling strategies and techniques were developed using a combination of discrete and statistically sampling designs to fully characterize potential MEC releases.

Mr. Steigerwalt provided details of the application of the statistical tools Visual Sample Plan (VSP) and UXO Estimator. In summary, the VSP is used to develop a sampling plan at MRSs with potential MEC releases where locations are unknown. UXO Estimator develops sampling plans at MRS with a homogeneous distribution of MEC to assess remaining MEC density.

Mr. Roach, EPA, asked about the standard for homogenous distribution. Mr. Steigerwalt responded that a non-homogenous area would be an impact area that was high density and the surrounding area would be a lower density. In a homogeneous area, you have the same probability of finding MEC in one area as you would another.

Mr. Steigerwalt explains that to meet performance objectives for positioning (GPS), GPS will be used first. If it fails, then a laser system (Robotic Total Station) or line and fiducial positioning would be used.
Mr. Pastorick mentioned that he has been working with Ms. Amy Walker (USACE) on a separate project where a similar geophysical system verification process to what is planned for Picatinny is being used. The industry standard objects being used for that project were not providing standard responses. Mr. Pastorick questioned how WESTON planned to address this issue. An idea was brought up to test each item before seeding them. It was also mentioned that the original GPO seeds could possibly be used.

Mr. Zalaskus, DEP questioned if enough previous work has been performed in the 1926 explosion radius to understand the site and reduce the amount of work that would need to be conducted as part of the MMRP RI. Mr. Steigerwalt responded that the team will use this information for site characterization, however the data isn’t compatible with the statistical approaches we plan to use for the RI and additional data needs to be collected to achieve our objectives.

Mr. Zalaskus asked how the previous MEC items recovered across the installation will be used as part of the MMRP RI. Mr. Steigerwalt responded that the MEC recovery information available will be included in a project GIS database for further evaluation.

Mr. Smith indicated that MEC recovery information from the UXO Finds map may not be completely accurate. Locations of previous MEC recovered on the installation may be generalized rather than presenting an exact location. Ms. Szegedi noted that the UXO Finds map is currently being digitalized and the metadata will indicate that these items are only approximate locations to differentiate from items that have exact GPS positions.

Ms. Voyce, PTA RAB suggested looking at a different sampling design for MC that starts with biased areas and then layer the statistical sampling on that.

The presentation listed potential MC that can be expected based on munitions that have been used at the site. These MC will be used to focus sample analysis. The list of potential MC contaminants can be expanded if different munitions types are recovered.

Mr. Gabel asked if there will be a step out process for samples that have elevated MC concentrations. Ms. Szegedi responded that it would be a phased sampling approach which includes delineation. Sampling data would be analyzed and if results are above Applicable or Relevant and Appropriate Requirements (ARARs), step out (phase II) sampling would be conducted.

Table shown below is a summary of MEC/MC activities applicable to each MRS.
5. MRS Specific Discussions (*Presentation Slides 33-123*)

(Lisa Szegedi, Malcolm Pirnie and Ryan Steigerwalt, WESTON)

Ms. Szegedi and R. Steigerwalt presented the technical approach each of the eight Picatinny MRSs, with each MRS addressed independently. The CSM (current and future land use and former military munitions-related activities, SI results and recommendations) for each MRS was presented. The details of the RI technical approach discussion including locations and quantities of geophysical surveys and MC sampling requirements for each MRS. The following sections summarize the proposed technical approaches, discussions and questions posed by the stakeholders after each MRS presentation.

1926 Explosion Radius (Presentation Slides 33-57)

The MEC characterization strategy for the 1926 Explosion radius is to investigate the two MRSs as one. An inner radius and an outer radius have been identified in the SI. The strategy for the Inner Radius is to perform geophysical investigations of 17, 50x50 ft grids randomly distributed in undisturbed areas to determine at a 95% confidence level MEC density is less than an average of 3MEC/acre (UXO Estimator). DGM will be performed on the grids unless areas are inaccessible to the DGM equipment. All anomalies are to be intrusively investigated. The strategy for the outer radius is to perform mag and dig on 43 (50 x 50 ft grids) and DGM on 59 (50x50 ft) grids randomly distributed in undisturbed areas to verify at a 95% confidence level MEC density of less than 0.5MEC/acre (UXO Estimator). All anomalies are to be intrusively investigated.

The MC sampling strategy is to perform biased sampling where MEC or MPPEH is found and has evidence of being breached (cracked or leaking). Samples will not be collected under intact items. Phase II step-out sampling to delineate MC, if necessary.
Mr. Pastorick asked if the data from the work completed at Tilcon was included. Ms. Szegedi responded that the data from the EE/CA and TCRA was being used and provided a brief discussion of the previous work conducted and results.

Ms. Flaherty said that it appears that the Child Development Center (CDC) had some other purpose that was not associated with the 1926 explosion since munitions not associated with that time period were recovered. Mr. Zalaskus asked if the CDC location was treated differently. Ms. Flaherty said the removal at the CDC area was performed during the EE/CA because the installation needed that site.

Ms. Dolce asked if the CDC site was still considered part of the 1926 explosion, a separate site, and considered in the RI even though the EE/CA was performed there. Ms. Szegedi responded the CDC area is included in the RI as part of the 1926 Explosion Radius MRS. Ms. Maly, AEC, said that during an RI it is not uncommon to investigate a larger area with smaller areas of interest long as they are similar in nature. It is possible to find that there are other areas similar to the CDC during the investigation so it is not necessary to split out one area at this time. It is an administrative hassle on the Army side.

Mr. Glaab asked if the MEC density at the CDC was unusually high. Mr. Gabel responded that it was higher than any other area included in the EE/CA. Ms. Flaherty said the CDC location was primarily undeveloped and all the munitions were removed before building the center. Mr. Smith said the MMRP provides UXO construction support for intrusive work at areas known to have been subjected to munitions related activities.

Mr. Kealy asked if the work should include investigating the area outside the footprint of the CDC. Lisa Szegedi noted that the CDC falls into the high density division of the 1926 Explosion Radius MRS.

Mr. Pastorick asked why 3 MEC per acre within the inner circle of the 1926 radius was selected as the goal and was it adequate for future decision making. Mr. Steigerwalt responded that it was based on results of previous finds, TCRA and EE/CA information.

Mr. Pastorick asked if there was any advantage to conduct biased sampling in the inner circle that can help with decision making. Ms. Szegedi responded that sampling will be conducted in grids that are located in undisturbed areas (where most of the MEC recovered during the EE/CA were found). Additional discussion focused on the sampling design. Mr. Steigerwalt said the sampling design developed using UXO Estimator isn’t to locate MEC but to confirm that there is less than a certain number of MEC per acre in a specific area.

Ms. Pastor said that it is possible and Weston is working with USACE to hold a workshop for the UXO estimator and VSP applications for anyone who would be interested. Attendees expressed interest in such a workshop. Ms. Maly said the Army has a MMRP 101 class that is 3½ days but could be focused to meet the needs of the group. Ms. Flaherty said the team will look into options.

Shell Burial Grounds (Presentation Slides 58-62)

The MEC characterization strategy for the shell burial grounds is to delineate buried debris at crater locations. Geophysical investigations will be performed on 0.23 acres or 3,326 linear feet. Transect surveys will be performed on 75-ft spacing using an EM31-MK2. The results of the surveys will be used to confirm/refine the MRS footprints and determine the horizontal and vertical extents. No
intrusive investigations are planned. MC investigations will not be performed as it has been addressed under the IRP.

Barbara Dolce asked what the team expects to accomplish there because it is already fenced and the certain volume of material is known, why not just evaluate the perimeter. Mr. Smith said the team is trying to characterize the site and confirm if the site is larger or smaller and to ensure the proper controls are in place.

Green Pond (Presentation Slides 63-70)

Geophysical investigations will be performed on 2.82 acres. Mag & dig transects will be performed in accessible areas of the Former DRMO Yard (not including areas previously excavated areas), along the banks and in the water of Green Pond Brook for a total coverage of 2.5 acres or 2.08 miles. EM31-MK2 transect surveys will be performed along the banks of Green Pond Brook to identify disposal/fill areas for a total coverage of 0.26 acres or 3,800 linear feet. Mag & dig focused grids (0.06 acres) will be placed in areas identified as disposal/fill areas from the EM31-MK2 surveys. All anomalies will be intrusively investigated in the grids. MC investigations will not be performed as it has been addressed under the IRP. The 300 Marsh Area is co-located to Green Pond and will be discussed later in the presentation.

Mr. Zalaskus asked if it was possible that MEC was disposed of in EOD Pond or other ponds in the areas and if the ponds were natural or man-made. Ms. Szegedi responded that there was anecdotal evidence that they might have dumped into Picatinny Lake and Lake Denmark. Ponds were wetlands at time of explosion and historical photographs before 1926 did not show if the ponds were naturally formed or man-made.

Former Operational Areas (Presentation Slides 71-85)

The MEC characterization strategy for the Former Operational Areas consists of performing mag & dig or DGM transects on a 250-ft spacing as determine from VSP calculations. VSP input includes using a potential size of MEC release of approximately 5-acres and applying 10 anomalies/acre with a potential MEC release area of 50 anomalies/acre. Total coverage of mag & dig surveys is 72 acres or 60 miles. A total of 5.5 acres or 15 miles of DGM transects using an EM61-MK2 will be performed. Additional transects may be required to delineate potential MEC. Five 100-ft x 100-ft focused grids (1.15 acres) will be placed in areas identified from transect surveys to evaluate geophysical anomalies. The MEC characterization strategy for the Former Sanitary Landfill and Waste Burial Areas will be to delineate the horizontal extents of these areas. Geophysical investigations will consist of performing EM31-MK2 transect surveys on 75-ft spacing across the landfill and burial areas. The MC characterization strategy for the MRS is to take a gridded sampling approach. Only soil samples will be collected as most water bodies are covered under the IRP. The sampling areas exclude all partially or wholly collocated IRP sites. Sample locations determined by VSP with assumptions that the site is contaminated, not normally distributed, and to collect data to reach 95% confidence level. Approximately 90 samples will be collected at 6-12 inches below ground surface. Phase II step sampling will be performed to delineate the extent of MC, if necessary.

Mr. Kealy asked if MEC items recovered during the geophysical surveys will be blow-in-place. Laura Pastor responded they will blow-in-place when they find something. Nancy Flaherty added that demolition activities may be performed by EOD.
Mr. Gabel clarified that G2 Pond, Stillwell Pond, and Hydro Pond (Presentation Slide 81) are not part of the eligible area and are not included in the MMRP.

Picatinny Lake (Presentation Slides 86-96)

Geophysical investigations of Picatinny Lake will consist of two phases and includes performing surveys across the lake (water investigations), and surveys of the land portions around the lake. The strategy for water investigations will be to evaluate existing geophysical data to create a dig list for the investigation. Underwater DGM transects will be performed to verify the existing geophysical data and to fill in data gaps. A total of 3 miles or 1 acre of transects will be performed across the lake. The data will be analyzed and additional targets will be added to the dig list. Prior to performing underwater intrusive investigations, DGM instrumentation will be used to refine target locations. Qualified divers will investigate 25 anomalies. Additional investigations will be performed on near shore/shoreline anomalies based on the existing data and mag & dig transect results. Land investigations will consist of performing 2.7 miles or 3.2 acres of mag & dig transect surveys along the shoreline of the lake, and across the firing point and slug butt locations. A 100-ft x 100-ft (0.25 acres) focused grid will be placed at the firing point to look for potential burial pits of DMM. An EM61-MK2 will be used to survey the grid and all anomalies will be intrusively investigated. No MC sampling.

Mr. Zalaskus asked if the water investigation was only visual or would the team dive investigate. Mr. Steigerwalt responded that first the team will locate the anomaly source and then dive team would intrusively investigate the anomaly.

Ms. Pastor stated that the underwater investigations are planned for sometime in 2012.

Lake Denmark (Presentation Slides 97-107)

Geophysical investigations of Lake Denmark will consist of two phases and includes performing surveys across the lake (water investigations), and surveys of the land portions around the lake. The strategy for water investigations will be to evaluate existing geophysical data to create a dig list for the investigation. Underwater DGM transects will be perform in the mortar range impact area. A total of 4.4 miles or 1.6 acres will be collected. The data will be analyzed and additional targets will be added to the dig list. Underwater intrusive investigations will be performed on 5 high density area target locations by qualified divers. Additional investigations will be performed on near shore/shoreline anomalies based on the existing data and mag & dig transect results. Land investigations will consist of performing mag & dig transect surveys and DGM focused grids. Transect spacing on the northern side of the lake will be 120-ft, based on VSP calculations with 20-mm projectile input parameters. The southern side of the lake will consist of 225-ft transect spacing based on VSP calculations with 60-mm mortar input parameters. A total of 10.9 miles or 13.4 acres of mag & dig transect surveys and shoreline surveys will be collected. Additional transects may be performed as needed (20-mm impact area) to fully delineate MEC. One DGM focused grid (100-ft x 100-ft) will be placed at each of the firing points and surveyed with an EM61-MK2 to look for potential DMM burial areas. All anomalies will be intrusively investigated within each grid.

J. Kealy asked what the ultimate goal at this MRS was assuming that Lake Denmark contains mortars. JB Smith responded that currently land use controls are in place for the lake. Recreational users must remain in boats and swimming is prohibited.
Lake Denmark – Off-Post (*Presentation Slides 108-116*)

The MEC characterization strategy for Lake Denmark-Off Post is to consist of performing 3.25 miles or 3.9 acres of mag & dig transect surveys at a spacing of 225-ft based on VSP calculations with 60-mm mortar input parameters. The surveys will be a continuation of the Lake Denmark (On Post) surveys on the southern side of the lake. Additional transects may be performed as necessary to delineate MEC. Four focused grids (0.94 acres) will be placed in areas identified from transect surveys to evaluate geophysical anomalies. All anomalies will be intrusively investigated.

MC sampling will be performed if MEC and/or MPPEH is discovered during the mag & dig surveys. Samples collected will be biased towards MEC locations. Phase II step-out sampling to delineate MC will be performed, if needed.

Inactive Munitions Waste Pit – Off-Post (*Presentation Slides 117-123*)

The characterization strategy for the Inactive Munitions Waste Pit-Off Post will be to perform full coverage mag & dig surveys of all accessible areas. These areas are primarily located at the top and bottom of the slope. Total coverage is approximately 3 acres.

(Lisa Szegedi, Malcolm Pirnie)

The MEC characterization strategy for the 300 Marsh Area is to perform focused mag & dig transects spaced 50-ft apart to determine anomaly densities across the area. One EM61-MK2 DGM grid (100-ft x 100-ft) will be placed in a high density area as determined from the transect survey to determine the nature/extent of MEC. All anomalies will be investigated within the grid as well as transects.

MC sampling strategy will follow an approved PTA Work Plan for the 300 Marsh Area. Up to 15 biased MC samples will be collected adjacent to disturbed soil, MEC, and MPPEH. If there are less than 15 biased sample locations identified, soil samples will be gridded across the area and collected at multiple depths to define the areal extent of contaminants of potential concern (COPCs). The results of the soil samples will be used to evaluate risk based on concentrations detected.

The presentation summarized site information, MEC characterization, chemical sampling, and analyses required for the 300 Marsh Area, which is not a separate MRS but is included in the MMRP as part of the 1926 Explosion Radius.

7. Next Steps (*Presentation Slide 129*)

(Laura Pastor, WESTON)

Ms. Pastor provided a discussion of the next steps of the TPP process. Work plan development would continue taking into account the TPP 1 discussions. Anticipated schedule to submit draft to Army and draft final to regulators/stakeholders was presented [Note: schedule has been revised to reflect a draft submittal to Army on February 2011. Draft final submittal to regulators sometime in April 2011]. A TPP Meeting 2 will be scheduled a few weeks after the draft final has been submitted to the regulators. This will allow the regulators/stakeholders an opportunity to digest the approaches for additional discussion. In addition, a more in-depth discussion on implementation and logistics will be included for this meeting. Field activities are scheduled to begin late in 2011.
Action Items

- Complete and distribute TPP 1 meeting minutes.

As required by the TPP process, the following table lists the stakeholders who were unable to attend the TPP 1 meeting.

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom Colozza</td>
<td>USACE – Baltimore District</td>
<td>QA Geophysicist</td>
</tr>
<tr>
<td>Travis McCoun</td>
<td>USACE – Baltimore District</td>
<td>MMRP Program Manager</td>
</tr>
</tbody>
</table>